Internal
problem
ID
[17374]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
26
Date
solved
:
Monday, March 31, 2025 at 04:09:46 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Bernoulli]
ode:=diff(y(x),x)-4*exp(x)*y(x)^2 = y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-4*Exp[x]*y[x]^2==y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*y(x)**2*exp(x) - y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)