Internal
problem
ID
[17372]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
24
Date
solved
:
Monday, March 31, 2025 at 04:09:37 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=(3*x(y)-y)*diff(x(y),y)+9*y-2*x(y) = 0; dsolve(ode,x(y), singsol=all);
ode=(3*x[y]-y)*D[x[y],y]+(9*y-2*x[y])==0; ic={}; DSolve[{ode,ic},x[y],y,IncludeSingularSolutions->True]
from sympy import * y = symbols("y") x = Function("x") ode = Eq(9*y + (-y + 3*x(y))*Derivative(x(y), y) - 2*x(y),0) ics = {} dsolve(ode,func=x(y),ics=ics)