Internal
problem
ID
[17364]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
15
Date
solved
:
Monday, March 31, 2025 at 04:07:48 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=diff(y(t),t)+3*y(t)/t = t^2*y(t)^2; dsolve(ode,y(t), singsol=all);
ode=D[y[t],t]+3/t*y[t]==t^2*y[t]^2; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**2*y(t)**2 + Derivative(y(t), t) + 3*y(t)/t,0) ics = {} dsolve(ode,func=y(t),ics=ics)