Internal
problem
ID
[17357]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 03:59:04 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x*diff(y(x),x)-4*(y(x)^2-x^2)^(1/2) = y(x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-4*Sqrt[ y[x]^2-x^2]==y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - 4*sqrt(-x**2 + y(x)**2) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)