Internal
problem
ID
[17352]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
3
Date
solved
:
Monday, March 31, 2025 at 03:55:51 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(3*x^3-x*y(x)^2)/(3*x^2*y(x)+y(x)^3)*diff(y(x),x) = 1; dsolve(ode,y(x), singsol=all);
ode=(3*x^3-x*y[x]^2)/(3*x^2*y[x]+y[x]^3)*D[y[x],x]==1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x**3 - x*y(x)**2)*Derivative(y(x), x)/(3*x**2*y(x) + y(x)**3) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)