76.5.3 problem 3

Internal problem ID [17352]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.7 (Substitution Methods). Problems at page 108
Problem number : 3
Date solved : Monday, March 31, 2025 at 03:55:51 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}}&=1 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 22
ode:=(3*x^3-x*y(x)^2)/(3*x^2*y(x)+y(x)^3)*diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {3}\, \sqrt {-\frac {1}{\operatorname {LambertW}\left (-3 c_1 \,x^{4}\right )}}\, x \]
Mathematica. Time used: 0.116 (sec). Leaf size: 65
ode=(3*x^3-x*y[x]^2)/(3*x^2*y[x]+y[x]^3)*D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {i \sqrt {3} x}{\sqrt {W\left (-3 e^{-3-2 c_1} x^4\right )}} \\ y(x)\to \frac {i \sqrt {3} x}{\sqrt {W\left (-3 e^{-3-2 c_1} x^4\right )}} \\ \end{align*}
Sympy. Time used: 2.176 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3*x**3 - x*y(x)**2)*Derivative(y(x), x)/(3*x**2*y(x) + y(x)**3) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e^{2 C_{1} + \frac {W\left (- 3 x^{4} e^{- 4 C_{1}}\right )}{2}}}{x} \]