Internal
problem
ID
[17349]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.6
(Exact
equations
and
integrating
factors).
Problems
at
page
100
Problem
number
:
32
Date
solved
:
Monday, March 31, 2025 at 03:55:39 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=3*x*y(x)+y(x)^2+(x^2+x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3*x*y[x]+y[x]^2) + (x^2+x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*y(x) + (x**2 + x*y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)