Internal
problem
ID
[17211]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
23.3
dAlemberts
method.
Exercises
page
243
Problem
number
:
829
Date
solved
:
Monday, March 31, 2025 at 03:44:46 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)+4*y(t)+cos(t), diff(y(t),t) = -x(t)-2*y(t)+sin(t)]; dsolve(ode);
ode={D[x[t],t]==2*x[t]+4*y[t]+Cos[t],D[y[t],t]==-x[t]-2*y[t]+Sin[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) - 4*y(t) - cos(t) + Derivative(x(t), t),0),Eq(x(t) + 2*y(t) - sin(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)