75.32.2 problem 826

Internal problem ID [17208]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 23.3 dAlemberts method. Exercises page 243
Problem number : 826
Date solved : Monday, March 31, 2025 at 03:44:41 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=6 x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=4 x \left (t \right )+3 y \left (t \right ) \end{align*}

Maple. Time used: 0.112 (sec). Leaf size: 34
ode:=[diff(x(t),t) = 6*x(t)+y(t), diff(y(t),t) = 4*x(t)+3*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{2 t}+c_2 \,{\mathrm e}^{7 t} \\ y \left (t \right ) &= -4 c_1 \,{\mathrm e}^{2 t}+c_2 \,{\mathrm e}^{7 t} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 71
ode={D[x[t],t]==6*x[t]+y[t],D[y[t],t]==4*x[t]+3*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{5} e^{2 t} \left (c_1 \left (4 e^{5 t}+1\right )+c_2 \left (e^{5 t}-1\right )\right ) \\ y(t)\to \frac {1}{5} e^{2 t} \left (4 c_1 \left (e^{5 t}-1\right )+c_2 \left (e^{5 t}+4\right )\right ) \\ \end{align*}
Sympy. Time used: 0.079 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-6*x(t) - y(t) + Derivative(x(t), t),0),Eq(-4*x(t) - 3*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {C_{1} e^{2 t}}{4} + C_{2} e^{7 t}, \ y{\left (t \right )} = C_{1} e^{2 t} + C_{2} e^{7 t}\right ] \]