Internal
problem
ID
[17192]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
23.
Methods
of
integrating
nonhomogeneous
linear
systems
with
constant
coefficients.
Exercises
page
234
Problem
number
:
810
Date
solved
:
Monday, March 31, 2025 at 03:44:14 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+2*x(t)-y(t) = -exp(2*t), diff(y(t),t)+3*x(t)-2*y(t) = 6*exp(2*t)]; dsolve(ode);
ode={D[x[t],t]+2*x[t]-y[t]==-Exp[2*t],D[y[t],t]+3*x[t]-2*y[t]==6*Exp[2*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) - y(t) + exp(2*t) + Derivative(x(t), t),0),Eq(3*x(t) - 2*y(t) - 6*exp(2*t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)