Internal
problem
ID
[17157]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
18.3.
Finding
periodic
solutions
of
linear
differential
equations.
Exercises
page
187
Problem
number
:
761
Date
solved
:
Monday, March 31, 2025 at 03:43:31 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+9*y(x) = sin(x)^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+9*y[x]==Sin[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) - sin(x)**3 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)