Internal
problem
ID
[17154]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
18.3.
Finding
periodic
solutions
of
linear
differential
equations.
Exercises
page
187
Problem
number
:
758
Date
solved
:
Monday, March 31, 2025 at 03:43:25 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = Pi^2-x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==Pi^2-x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + 4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - pi**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)