Internal
problem
ID
[17142]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
18.2.
Expanding
a
solution
in
generalized
power
series.
Bessels
equation.
Exercises
page
177
Problem
number
:
739
Date
solved
:
Monday, March 31, 2025 at 03:43:06 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=4*x*diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=4*x*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), (x, 2)) + y(x) + 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)