Internal
problem
ID
[17091]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
667
Date
solved
:
Monday, March 31, 2025 at 03:40:30 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=4*x*diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 1; ic:=y(infinity) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=4*x*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==1; ic={y[Infinity]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), (x, 2)) + y(x) + 2*Derivative(y(x), x) - 1,0) ics = {y(oo): 1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*x*Derivative(y(x), (x, 2)) + y(x)/2 + Derivative(y(x), x) - 1/2 cannot be solved by the factorable group method