Internal
problem
ID
[17089]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
665
Date
solved
:
Monday, March 31, 2025 at 03:40:26 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
ode:=x*diff(diff(y(x),x),x)+(2*x-1)*diff(y(x),x) = -4*x^2; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]+(2*x-1)*D[y[x],x]==-4*x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2 + x*Derivative(y(x), (x, 2)) + (2*x - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(-4*x - Derivative(y(x), (x, 2)))/(2*x - 1) + Derivative(y(x), x) cannot be solved by the factorable group method