75.20.24 problem 663

Internal problem ID [17087]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.5 Linear equations with variable coefficients. The Lagrange method. Exercises page 148
Problem number : 663
Date solved : Monday, March 31, 2025 at 03:40:23 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }&=1 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 31
ode:=diff(diff(y(x),x),x)-2*tan(x)*diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\ln \left (1+\cos \left (2 x \right )\right )}{4}+\frac {\ln \left (\cos \left (x \right )\right )}{2}+\frac {\left (2 x +4 c_1 \right ) \tan \left (x \right )}{4}+c_2 \]
Mathematica. Time used: 0.056 (sec). Leaf size: 37
ode=D[y[x],{x,2}]-2*Tan[x]*D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \int _1^x\sec ^2(K[2]) \left (c_1+\int _1^{K[2]}\cos ^2(K[1])dK[1]\right )dK[2]+c_2 \]
Sympy. Time used: 5.154 (sec). Leaf size: 170
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2} \sin {\left (x \right )}}{\cos {\left (x \right )}} - \frac {x \tan {\left (\frac {x}{2} \right )}}{\tan ^{2}{\left (\frac {x}{2} \right )} - 1} - \frac {\log {\left (\cos {\left (x \right )} \right )}}{2} + \frac {\log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )} \tan ^{2}{\left (\frac {x}{2} \right )}}{2 \left (\tan ^{2}{\left (\frac {x}{2} \right )} - 1\right )} - \frac {\log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )}}{2 \left (\tan ^{2}{\left (\frac {x}{2} \right )} - 1\right )} + \frac {\log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )} \tan ^{2}{\left (\frac {x}{2} \right )}}{2 \left (\tan ^{2}{\left (\frac {x}{2} \right )} - 1\right )} - \frac {\log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )}}{2 \left (\tan ^{2}{\left (\frac {x}{2} \right )} - 1\right )} - \frac {\log {\left (\tan ^{2}{\left (\frac {x}{2} \right )} + 1 \right )} \tan ^{2}{\left (\frac {x}{2} \right )}}{2 \left (\tan ^{2}{\left (\frac {x}{2} \right )} - 1\right )} + \frac {\log {\left (\tan ^{2}{\left (\frac {x}{2} \right )} + 1 \right )}}{2 \left (\tan ^{2}{\left (\frac {x}{2} \right )} - 1\right )} \]