Internal
problem
ID
[17070]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
642
Date
solved
:
Monday, March 31, 2025 at 03:39:55 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=(x^2+1)*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 1; dsolve(ode,y(x), singsol=all);
ode=(1+x^2)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - y(x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*Derivative(y(x), (x, 2)) + y(x) - Derivative(y(x), (x, 2)) + 1)/x cannot be solved by the factorable group method