Internal
problem
ID
[17065]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
637
Date
solved
:
Monday, March 31, 2025 at 03:39:48 PM
CAS
classification
:
[_Jacobi]
ode:=(x^2-x)*diff(diff(y(x),x),x)+(2*x-3)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-x)*D[y[x],{x,2}]+(2*x-3)*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x - 3)*Derivative(y(x), x) + (x**2 - x)*Derivative(y(x), (x, 2)) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False