Internal
problem
ID
[17059]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.4
Nonhomogeneous
linear
equations
with
constant
coefficients.
The
Euler
equations.
Exercises
page
143
Problem
number
:
631
Date
solved
:
Monday, March 31, 2025 at 03:39:33 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)-2*y(x) = x^2-2*x+2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]-2*y[x]==x^2-2*x+2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x**2 - 2*x*Derivative(y(x), x) + 2*x - 2*y(x) - 2,0) ics = {} dsolve(ode,func=y(x),ics=ics)