Internal
problem
ID
[17051]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.4
Nonhomogeneous
linear
equations
with
constant
coefficients.
The
Euler
equations.
Exercises
page
143
Problem
number
:
623
Date
solved
:
Monday, March 31, 2025 at 03:39:19 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(2*x+1)^2*diff(diff(y(x),x),x)-2*(2*x+1)*diff(y(x),x)+4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x+1)^2*D[y[x],{x,2}]-2*(2*x+1)*D[y[x],x]+4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x + 1)**2*Derivative(y(x), (x, 2)) - (4*x + 2)*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False