Internal
problem
ID
[17040]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
612
Date
solved
:
Monday, March 31, 2025 at 03:38:54 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 4*exp(-x); ic:=y(infinity) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==4*Exp[-x]; ic={y[Infinity]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 4*exp(-x),0) ics = {y(oo): 0} dsolve(ode,func=y(x),ics=ics)