Internal
problem
ID
[17035]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
607
Date
solved
:
Monday, March 31, 2025 at 03:38:46 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-y(x) = 8*exp(x); ic:=y(0) = 0, D(y)(0) = 2, (D@@2)(y)(0) = 4, (D@@3)(y)(0) = 6; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,4}]-y[x]==8*Exp[x]; ic={y[0]==0,Derivative[1][y][0] ==2,Derivative[2][y][0] ==4,Derivative[3][y][0]==6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) - 8*exp(x) + Derivative(y(x), (x, 4)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 2, Subs(Derivative(y(x), (x, 2)), x, 0): 4, Subs(Derivative(y(x), (x, 3)), x, 0): 6} dsolve(ode,func=y(x),ics=ics)