Internal
problem
ID
[17027]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
599
Date
solved
:
Monday, March 31, 2025 at 03:38:32 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = 4*x*cos(x); ic:=y(0) = 0, D(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==4*x*Cos[x]; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*cos(x) + y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)