Internal
problem
ID
[769]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
41
Date
solved
:
Saturday, March 29, 2025 at 10:21:35 PM
CAS
classification
:
[_exact, _rational]
ode:=2*x/y(x)-3*y(x)^2/x^4+(-x^2/y(x)^2+1/y(x)^(1/2)+2*y(x)/x^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x/y[x]-3*y[x]^2/x^4+(-x^2/y[x]^2+1/y[x]^(1/2)+2*y[x]/x^3)*D[y[x],x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x/y(x) + (-x**2/y(x)**2 + 1/sqrt(y(x)) + 2*y(x)/x**3)*Derivative(y(x), x) - 3*y(x)**2/x**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out