75.16.39 problem 512

Internal problem ID [16941]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132
Problem number : 512
Date solved : Monday, March 31, 2025 at 03:35:59 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+9 y&=9 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)+9*y(x) = 9; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (3 x \right ) c_2 +\cos \left (3 x \right ) c_1 +1 \]
Mathematica. Time used: 0.014 (sec). Leaf size: 21
ode=D[y[x],{x,2}]+9*y[x]==9; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (3 x)+c_2 \sin (3 x)+1 \]
Sympy. Time used: 0.071 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) + Derivative(y(x), (x, 2)) - 9,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )} + 1 \]