Internal
problem
ID
[16934]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Trial
and
error
method.
Exercises
page
132
Problem
number
:
505
Date
solved
:
Monday, March 31, 2025 at 03:35:49 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*n^2*diff(diff(y(x),x),x)+n^4*y(x) = a*sin(n*x+alpha); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+2*n^2*D[y[x],{x,2}]+n^4*y[x]==a*Sin[n*x+\[Alpha]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(-a*sin(Alpha + n*x) + n**4*y(x) + 2*n**2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)