Internal
problem
ID
[16902]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.2
Homogeneous
differential
equations
with
constant
coefficients.
Exercises
page
121
Problem
number
:
453
Date
solved
:
Monday, March 31, 2025 at 03:35:02 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x) = 0; ic:=y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,3}]+D[y[x],{x,2}]==0; ic={y[0]==1,Derivative[1][y][0] ==0,Derivative[2][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 1} dsolve(ode,func=y(x),ics=ics)