75.15.2 problem 433

Internal problem ID [16882]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121
Problem number : 433
Date solved : Monday, March 31, 2025 at 03:34:39 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }-8 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=3*diff(diff(y(x),x),x)-2*diff(y(x),x)-8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-\frac {4 x}{3}}+c_2 \,{\mathrm e}^{2 x} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 24
ode=3*D[y[x],{x,2}]-2*D[y[x],x]-8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-4 x/3}+c_2 e^{2 x} \]
Sympy. Time used: 0.146 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*y(x) - 2*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {4 x}{3}} + C_{2} e^{2 x} \]