75.14.35 problem 361

Internal problem ID [16878]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 14. Differential equations admitting of depression of their order. Exercises page 107
Problem number : 361
Date solved : Monday, March 31, 2025 at 03:34:29 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }&={\mathrm e}^{2 y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Maple. Time used: 0.182 (sec). Leaf size: 12
ode:=diff(diff(y(x),x),x) = exp(2*y(x)); 
ic:=y(0) = 0, D(y)(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\frac {\ln \left (\left (x -1\right )^{2}\right )}{2} \]
Mathematica. Time used: 0.151 (sec). Leaf size: 13
ode=D[y[x],{x,2}]==Exp[2*y[x]]; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\log (1-x) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(2*y(x)) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)