75.14.17 problem 343

Internal problem ID [16860]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 14. Differential equations admitting of depression of their order. Exercises page 107
Problem number : 343
Date solved : Monday, March 31, 2025 at 03:33:29 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=\sqrt {1-{y^{\prime }}^{2}} \end{align*}

Maple. Time used: 4.015 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x) = (1-diff(y(x),x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x +c_{1} \\ y &= x +c_{1} \\ y &= -\cos \left (x +c_{1} \right )+c_{2} \\ \end{align*}
Mathematica. Time used: 54.755 (sec). Leaf size: 60
ode=D[y[x],{x,2}]==Sqrt[1-D[y[x],x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \int _1^x\sin (c_1+K[1])dK[1]+c_2 \\ y(x)\to -\cos \left (2 \pi \text {frac}\left (\frac {x-1}{2 \pi }\right )+1\right )+\cos (1)+c_2 \\ y(x)\to \text {Interval}[\{-2,2\}]+c_2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(1 - Derivative(y(x), x)**2) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out