Internal
problem
ID
[16857]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
14.
Differential
equations
admitting
of
depression
of
their
order.
Exercises
page
107
Problem
number
:
340
Date
solved
:
Monday, March 31, 2025 at 03:33:21 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
ode:=x*diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,3}]-D[y[x],{x,2}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 3)) - Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)