75.13.3 problem 320

Internal problem ID [16837]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 13. Basic concepts and definitions. Exercises page 98
Problem number : 320
Date solved : Monday, March 31, 2025 at 03:23:53 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x) = diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (-c_1 x -c_2 \right ) \]
Mathematica. Time used: 0.175 (sec). Leaf size: 15
ode=D[y[x],{x,2}]==D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\log (x+c_1) \]
Sympy. Time used: 0.434 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \log {\left (C_{2} + x \right )} \]