75.12.19 problem 293

Internal problem ID [16814]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 12. Miscellaneous problems. Exercises page 93
Problem number : 293
Date solved : Monday, March 31, 2025 at 03:22:39 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x^{2}+y^{2}-x y y^{\prime }&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 28
ode:=x^2+y(x)^2-x*y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {2 \ln \left (x \right )+c_1}\, x \\ y &= -\sqrt {2 \ln \left (x \right )+c_1}\, x \\ \end{align*}
Mathematica. Time used: 0.183 (sec). Leaf size: 36
ode=(x^2+y[x]^2)-x*y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x \sqrt {2 \log (x)+c_1} \\ y(x)\to x \sqrt {2 \log (x)+c_1} \\ \end{align*}
Sympy. Time used: 0.359 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 - x*y(x)*Derivative(y(x), x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x \sqrt {C_{1} + 2 \log {\left (x \right )}}, \ y{\left (x \right )} = x \sqrt {C_{1} + 2 \log {\left (x \right )}}\right ] \]