75.11.7 problem 266

Internal problem ID [16787]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 11. Singular solutions of differential equations. Exercises page 92
Problem number : 266
Date solved : Monday, March 31, 2025 at 03:17:50 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y \left (y-2 x y^{\prime }\right )^{2}&=2 y^{\prime } \end{align*}

Maple. Time used: 0.550 (sec). Leaf size: 99
ode:=y(x)*(y(x)-2*x*diff(y(x),x))^2 = 2*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {1}{2 \sqrt {-x}} \\ y &= \frac {1}{2 \sqrt {-x}} \\ y &= 0 \\ y &= \frac {\sqrt {x \left (c_1 +x \right )}}{c_1 \sqrt {x}} \\ y &= \frac {\sqrt {x \left (-c_1 +x \right )}}{c_1 \sqrt {x}} \\ y &= -\frac {\sqrt {x \left (c_1 +x \right )}}{c_1 \sqrt {x}} \\ y &= -\frac {\sqrt {x \left (-c_1 +x \right )}}{c_1 \sqrt {x}} \\ \end{align*}
Mathematica. Time used: 3.108 (sec). Leaf size: 158
ode=y[x]*(y[x]-2*x*D[y[x],x])^2==2*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {2} \sqrt {e^{-2 c_1} \left (2 x-e^{c_1}\right )} \\ y(x)\to \sqrt {2} \sqrt {e^{-2 c_1} \left (2 x-e^{c_1}\right )} \\ y(x)\to -\sqrt {2} \sqrt {e^{-2 c_1} \left (2 x+e^{c_1}\right )} \\ y(x)\to \sqrt {2} \sqrt {e^{-2 c_1} \left (2 x+e^{c_1}\right )} \\ y(x)\to 0 \\ y(x)\to -\frac {i}{2 \sqrt {x}} \\ y(x)\to \frac {i}{2 \sqrt {x}} \\ \end{align*}
Sympy. Time used: 172.186 (sec). Leaf size: 279
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-2*x*Derivative(y(x), x) + y(x))**2*y(x) - 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {C_{1} \left (C_{1} x - 2\right )}}{2}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} \left (C_{1} x - 2\right )}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {C_{1} \left (C_{1} x + 2\right )}}{2}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} \left (C_{1} x + 2\right )}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {- C_{1} x - 2 \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {- C_{1} x - 2 \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {- C_{1} x + 2 \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {- C_{1} x + 2 \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {C_{1} \left (C_{1} x - 2\right )}}{2}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} \left (C_{1} x - 2\right )}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {C_{1} \left (C_{1} x + 2\right )}}{2}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} \left (C_{1} x + 2\right )}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {- C_{1} x - 2 \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {- C_{1} x - 2 \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {- C_{1} x + 2 \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {- C_{1} x + 2 \sqrt {- C_{1}}}}{2}\right ] \]