Internal
problem
ID
[16775]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
8.3.
The
Lagrange
and
Clairaut
equations.
Exercises
page
72
Problem
number
:
228
Date
solved
:
Monday, March 31, 2025 at 03:16:54 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=y(x) = x*diff(y(x),x)+a*(1+diff(y(x),x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=y[x]==x*D[y[x],x]+a*Sqrt[1+D[y[x],x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a*sqrt(Derivative(y(x), x)**2 + 1) - x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out