Internal
problem
ID
[747]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
19
Date
solved
:
Saturday, March 29, 2025 at 10:18:19 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=2*x*y(x)+x^2*diff(y(x),x) = 5*y(x)^3; dsolve(ode,y(x), singsol=all);
ode=2*x*y[x]+x^2*D[y[x],x] == 5*y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + 2*x*y(x) - 5*y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)