75.9.7 problem 226

Internal problem ID [16773]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8.3. The Lagrange and Clairaut equations. Exercises page 72
Problem number : 226
Date solved : Monday, March 31, 2025 at 03:16:51 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} y&=x y^{\prime }+{y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 17
ode:=y(x) = x*diff(y(x),x)+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {x^{2}}{4} \\ y &= c_1 \left (c_1 +x \right ) \\ \end{align*}
Mathematica. Time used: 0.006 (sec). Leaf size: 23
ode=y[x]==x*D[y[x],x]+D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 (x+c_1) \\ y(x)\to -\frac {x^2}{4} \\ \end{align*}
Sympy. Time used: 1.408 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + y(x) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \left (C_{1} + 2 x\right )}{4} \]