75.9.1 problem 220

Internal problem ID [16767]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8.3. The Lagrange and Clairaut equations. Exercises page 72
Problem number : 220
Date solved : Monday, March 31, 2025 at 03:16:35 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} y&=2 x y^{\prime }+\ln \left (y^{\prime }\right ) \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 69
ode:=y(x) = 2*x*diff(y(x),x)+ln(diff(y(x),x)); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -1+\sqrt {4 c_1 x +1}-\ln \left (2\right )+\ln \left (\frac {-1+\sqrt {4 c_1 x +1}}{x}\right ) \\ y &= -1-\sqrt {4 c_1 x +1}-\ln \left (2\right )+\ln \left (\frac {-1-\sqrt {4 c_1 x +1}}{x}\right ) \\ \end{align*}
Mathematica. Time used: 0.07 (sec). Leaf size: 258
ode=y[x]==2*x*D[y[x],x]+Log[D[y[x],x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\frac {W\left (2 e^{y(x)} K[1]\right )}{K[1] \left (W\left (2 e^{y(x)} K[1]\right )+2\right )}dK[1]+\int _1^{y(x)}-\frac {W\left (2 e^{K[2]} x\right ) \int _1^x\left (\frac {W\left (2 e^{K[2]} K[1]\right )}{K[1] \left (W\left (2 e^{K[2]} K[1]\right )+1\right ) \left (W\left (2 e^{K[2]} K[1]\right )+2\right )}-\frac {W\left (2 e^{K[2]} K[1]\right )^2}{K[1] \left (W\left (2 e^{K[2]} K[1]\right )+1\right ) \left (W\left (2 e^{K[2]} K[1]\right )+2\right )^2}\right )dK[1]+2 \int _1^x\left (\frac {W\left (2 e^{K[2]} K[1]\right )}{K[1] \left (W\left (2 e^{K[2]} K[1]\right )+1\right ) \left (W\left (2 e^{K[2]} K[1]\right )+2\right )}-\frac {W\left (2 e^{K[2]} K[1]\right )^2}{K[1] \left (W\left (2 e^{K[2]} K[1]\right )+1\right ) \left (W\left (2 e^{K[2]} K[1]\right )+2\right )^2}\right )dK[1]+2}{W\left (2 e^{K[2]} x\right )+2}dK[2]=c_1,y(x)\right ] \]
Sympy. Time used: 1.073 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + y(x) - log(Derivative(y(x), x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} - y{\left (x \right )} - \log {\left (W\left (2 x e^{y{\left (x \right )}}\right ) + 2 \right )} + W\left (2 x e^{y{\left (x \right )}}\right ) = 0 \]