75.8.17 problem 215

Internal problem ID [16762]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8. First order not solved for the derivative. Exercises page 67
Problem number : 215
Date solved : Monday, March 31, 2025 at 03:16:19 PM
CAS classification : [_quadrature]

\begin{align*} x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=a \end{align*}

Maple. Time used: 0.352 (sec). Leaf size: 229
ode:=x*(1+diff(y(x),x)^2)^(3/2) = a; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \int \frac {\sqrt {\left (a \,x^{2}\right )^{{2}/{3}}-x^{2}}}{x}d x +c_1 \\ y &= -\frac {\int \frac {\sqrt {-2 i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-2 \left (a \,x^{2}\right )^{{2}/{3}}-4 x^{2}}}{x}d x}{2}+c_1 \\ y &= \frac {\int \frac {\sqrt {-2 i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-2 \left (a \,x^{2}\right )^{{2}/{3}}-4 x^{2}}}{x}d x}{2}+c_1 \\ y &= -\int \frac {\sqrt {\left (a \,x^{2}\right )^{{2}/{3}}-x^{2}}}{x}d x +c_1 \\ y &= -\frac {\sqrt {2}\, \int \frac {\sqrt {i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-\left (a \,x^{2}\right )^{{2}/{3}}-2 x^{2}}}{x}d x}{2}+c_1 \\ y &= \frac {\sqrt {2}\, \int \frac {\sqrt {i \sqrt {3}\, \left (a \,x^{2}\right )^{{2}/{3}}-\left (a \,x^{2}\right )^{{2}/{3}}-2 x^{2}}}{x}d x}{2}+c_1 \\ \end{align*}
Mathematica. Time used: 0.343 (sec). Leaf size: 216
ode=x*(1+D[y[x],x]^2)^(3/2)==a; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x \left (\frac {a^{2/3}}{x^{2/3}}-1\right )^{3/2}+c_1 \\ y(x)\to x \left (\frac {a^{2/3}}{x^{2/3}}-1\right )^{3/2}+c_1 \\ y(x)\to c_1-x \left (-1-\frac {i \left (\sqrt {3}-i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2} \\ y(x)\to x \left (-1-\frac {i \left (\sqrt {3}-i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}+c_1 \\ y(x)\to c_1-x \left (-1+\frac {i \left (\sqrt {3}+i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2} \\ y(x)\to x \left (-1+\frac {i \left (\sqrt {3}+i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}+c_1 \\ \end{align*}
Sympy. Time used: 4.307 (sec). Leaf size: 221
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a + x*(Derivative(y(x), x)**2 + 1)**(3/2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \int \sqrt {\sqrt [3]{\frac {a^{2}}{x^{2}}} - 1}\, dx, \ y{\left (x \right )} = C_{1} + \int \sqrt {\sqrt [3]{\frac {a^{2}}{x^{2}}} - 1}\, dx, \ y{\left (x \right )} = C_{1} - \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} - \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}, \ y{\left (x \right )} = C_{1} + \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} - \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}, \ y{\left (x \right )} = C_{1} - \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} + \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}, \ y{\left (x \right )} = C_{1} + \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} + \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}\right ] \]