75.8.1 problem 199

Internal problem ID [16746]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8. First order not solved for the derivative. Exercises page 67
Problem number : 199
Date solved : Monday, March 31, 2025 at 03:15:44 PM
CAS classification : [_quadrature]

\begin{align*} 4 {y^{\prime }}^{2}-9 x&=0 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 19
ode:=4*diff(y(x),x)^2-9*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x^{{3}/{2}}+c_1 \\ y &= x^{{3}/{2}}+c_1 \\ \end{align*}
Mathematica. Time used: 0.005 (sec). Leaf size: 27
ode=4*D[y[x],x]^2-9*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x^{3/2}+c_1 \\ y(x)\to x^{3/2}+c_1 \\ \end{align*}
Sympy. Time used: 0.317 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*x + 4*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - x^{\frac {3}{2}}, \ y{\left (x \right )} = C_{1} + x^{\frac {3}{2}}\right ] \]