Internal
problem
ID
[16735]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
188
Date
solved
:
Monday, March 31, 2025 at 03:15:03 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
ode:=3*x^2*y(x)+y(x)^3+(x^3+3*x*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 3*x^2*y[x]+y[x]^3)+(x^3+3*x*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*y(x) + (x**3 + 3*x*y(x)**2)*Derivative(y(x), x) + y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out