Internal
problem
ID
[16727]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
179
Date
solved
:
Monday, March 31, 2025 at 03:12:13 PM
CAS
classification
:
[[_homogeneous, `class D`], _exact, _rational]
ode:=2*x+(x^2+y(x)^2)/x^2/y(x) = (x^2+y(x)^2)/x/y(x)^2*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=(2*x+ (x^2+y[x]^2)/(x^2*y[x]) )==( (x^2+y[x]^2)/(x*y[x]^2) )*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x - (x**2 + y(x)**2)*Derivative(y(x), x)/(x*y(x)**2) + (x**2 + y(x)**2)/(x**2*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**3*y(x) + x**2 + y(x)**2)*y(x)/(x*(x**2 + y(x)**2)) cannot be solved by the factorable group method