Internal
problem
ID
[741]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
13
Date
solved
:
Saturday, March 29, 2025 at 10:17:52 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*diff(y(x),x) = y(x)+(x^2+y(x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x] == y[x]+(x^2+y[x]^2)^(1/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + y(x)**2) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)