8.5.13 problem 13

Internal problem ID [741]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 1.6, Substitution methods and exact equations. Page 74
Problem number : 13
Date solved : Saturday, March 29, 2025 at 10:17:52 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x y^{\prime }&=y+\sqrt {x^{2}+y^{2}} \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 26
ode:=x*diff(y(x),x) = y(x)+(x^2+y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {-c_1 \,x^{2}+\sqrt {x^{2}+y^{2}}+y}{x^{2}} = 0 \]
Mathematica. Time used: 0.279 (sec). Leaf size: 13
ode=x*D[y[x],x] == y[x]+(x^2+y[x]^2)^(1/2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \sinh (\log (x)+c_1) \]
Sympy. Time used: 1.145 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + y(x)**2) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x \sinh {\left (C_{1} - \log {\left (x \right )} \right )} \]