Internal
problem
ID
[16708]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
156
Date
solved
:
Monday, March 31, 2025 at 03:06:51 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=diff(y(x),x)*cos(x)-y(x)*sin(x) = -sin(2*x); ic:=y(1/2*Pi) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=Cos[x]*D[y[x],x]-y[x]*Sin[x]==-Sin[2*x]; ic={y[Pi/2]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)*sin(x) + sin(2*x) + cos(x)*Derivative(y(x), x),0) ics = {y(pi/2): 0} dsolve(ode,func=y(x),ics=ics)