Internal
problem
ID
[16700]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
148
Date
solved
:
Monday, March 31, 2025 at 03:06:17 PM
CAS
classification
:
[[_linear, `class A`]]
ode:=diff(y(x),x)-y(x)*ln(2) = 2^sin(x)*(-1+cos(x))*ln(2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-y[x]*Log[2]==2^(Sin[x])*(Cos[x]-1)*Log[2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2**sin(x)*(cos(x) - 1)*log(2) - y(x)*log(2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)