Internal
problem
ID
[16696]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
135
Date
solved
:
Monday, March 31, 2025 at 03:06:07 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x) = y(x)/(2*y(x)*ln(y(x))+y(x)-x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]/(2*y[x]*Log[y[x]]+y[x]-x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - y(x)/(-x + 2*y(x)*log(y(x)) + y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)