75.6.8 problem 132

Internal problem ID [16693]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54
Problem number : 132
Date solved : Monday, March 31, 2025 at 03:05:59 PM
CAS classification : [_linear]

\begin{align*} y^{\prime } x \ln \left (x \right )-y&=3 x^{3} \ln \left (x \right )^{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 12
ode:=diff(y(x),x)*x*ln(x)-y(x) = 3*x^3*ln(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x^{3}+c_1 \right ) \ln \left (x \right ) \]
Mathematica. Time used: 0.039 (sec). Leaf size: 14
ode=D[y[x],x]*x*Log[x]-y[x]==3*x^3*(Log[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (x^3+c_1\right ) \log (x) \]
Sympy. Time used: 0.255 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x**3*log(x)**2 + x*log(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x^{3}\right ) \log {\left (x \right )} \]