75.5.18 problem 117

Internal problem ID [16683]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 5. Homogeneous equations. Exercises page 44
Problem number : 117
Date solved : Monday, March 31, 2025 at 03:05:23 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} 4 y^{6}+x^{3}&=6 x y^{5} y^{\prime } \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 123
ode:=4*y(x)^6+x^3 = 6*x*y(x)^5*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (x^{3} \left (c_1 x -1\right )\right )^{{1}/{6}} \\ y &= -\left (x^{3} \left (c_1 x -1\right )\right )^{{1}/{6}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (x^{3} \left (c_1 x -1\right )\right )^{{1}/{6}}}{2} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (x^{3} \left (c_1 x -1\right )\right )^{{1}/{6}}}{2} \\ y &= -\frac {\left (i \sqrt {3}-1\right ) \left (x^{3} \left (c_1 x -1\right )\right )^{{1}/{6}}}{2} \\ y &= \frac {\left (1+i \sqrt {3}\right ) \left (x^{3} \left (c_1 x -1\right )\right )^{{1}/{6}}}{2} \\ \end{align*}
Mathematica. Time used: 0.432 (sec). Leaf size: 144
ode=4*y[x]^6+x^3==6*x*y[x]^5*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {x} \sqrt [6]{-1+c_1 x} \\ y(x)\to \sqrt {x} \sqrt [6]{-1+c_1 x} \\ y(x)\to -\sqrt [3]{-1} \sqrt {x} \sqrt [6]{-1+c_1 x} \\ y(x)\to \sqrt [3]{-1} \sqrt {x} \sqrt [6]{-1+c_1 x} \\ y(x)\to -(-1)^{2/3} \sqrt {x} \sqrt [6]{-1+c_1 x} \\ y(x)\to (-1)^{2/3} \sqrt {x} \sqrt [6]{-1+c_1 x} \\ \end{align*}
Sympy. Time used: 4.848 (sec). Leaf size: 126
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 - 6*x*y(x)**5*Derivative(y(x), x) + 4*y(x)**6,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt [6]{x^{3} \left (C_{1} x - 1\right )}, \ y{\left (x \right )} = \sqrt [6]{x^{3} \left (C_{1} x - 1\right )}, \ y{\left (x \right )} = \frac {\sqrt [6]{x^{3} \left (C_{1} x - 1\right )} \left (-1 - \sqrt {3} i\right )}{2}, \ y{\left (x \right )} = \frac {\sqrt [6]{x^{3} \left (C_{1} x - 1\right )} \left (-1 + \sqrt {3} i\right )}{2}, \ y{\left (x \right )} = \frac {\sqrt [6]{x^{3} \left (C_{1} x - 1\right )} \left (1 - \sqrt {3} i\right )}{2}, \ y{\left (x \right )} = \frac {\sqrt [6]{x^{3} \left (C_{1} x - 1\right )} \left (1 + \sqrt {3} i\right )}{2}\right ] \]