Internal
problem
ID
[16679]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
5.
Homogeneous
equations.
Exercises
page
44
Problem
number
:
113
Date
solved
:
Monday, March 31, 2025 at 03:05:12 PM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
ode:=8*x+4*y(x)+1+(4*x+2*y(x)+1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(8*x+4*y[x]+1)+(4*x+2*y[x]+1)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*x + (4*x + 2*y(x) + 1)*Derivative(y(x), x) + 4*y(x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)