75.4.23 problem 88

Internal problem ID [16654]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 4. Equations with variables separable and equations reducible to them. Exercises page 38
Problem number : 88
Date solved : Monday, March 31, 2025 at 03:03:45 PM
CAS classification : [_quadrature]

\begin{align*} \ln \left (y^{\prime }\right )&=x \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 8
ode:=ln(diff(y(x),x)) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x}+c_1 \]
Mathematica. Time used: 0.003 (sec). Leaf size: 11
ode=Log[D[y[x],x]]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x+c_1 \]
Sympy. Time used: 0.152 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + log(Derivative(y(x), x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + e^{x} \]