Internal
problem
ID
[16563]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
5.
Applications
of
Higher
Order
Equations.
Exercises
5.2,
page
241
Problem
number
:
2
Date
solved
:
Monday, March 31, 2025 at 02:58:51 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=1/32*diff(diff(x(t),t),t)+2*diff(x(t),t)+x(t) = 0; ic:=x(0) = 1, D(x)(0) = 0; dsolve([ode,ic],x(t), singsol=all);
ode=1/32*D[x[t],{t,2}]+2*D[x[t],t]+x[t]==0; ic={x[0]==1,Derivative[1][x][0 ]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(x(t) + 2*Derivative(x(t), t) + Derivative(x(t), (t, 2))/32,0) ics = {x(0): 1, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=x(t),ics=ics)